Advancing Modeling of Lake Ice Thickness and Phenology in High-Latitude Regions

Homa Kheyrollah Pour G. Attiah, K.A. Scott, C.R. Duguay

Remote Sensing of Environmental Change Research Group

ReSE

7th LAKES Workshop / 20-21-22 November / Milan

Parameterization of Lakes in Numerical Weather Prediction and Climate Modelling 2024

WATERLOO

Lakes in Canada & Northwest Territories (NWT)

~2 million Lakes in Canada >160,000 Lakes in NWT > 8% of Canadian Lakes

Lakes in Canada & Northwest Territories (NWT)

~2 million Lakes in Canada >160,000 Lakes in NWT > 8% of Canadian Lakes

Winter Climate Warming – Northwest Territories (NWT)

NWT by 2080

- Annual Mean Temperature can increase by +5.6°C
- Winter Mean Temperature can increase by +7.8°C
- Winter Min Temperature can increase by +8.2°C

Winter Climate Warming – NWT

Climate Change & Ice Roads Safety

There is a lack of knowledge on how winter climate warming affects the variability and evolution lake ice cover.

Climate Change & Ice Roads Safety

There is a lack of knowledge on how winter climate warming affects the variability and evolution lake ice cover.

Multi-method Approach

Traditional Knowledge (TK)

Ice Thickness

Canadian Lake Ice Model-Grid (CLIMoGrid Model)

Lake Surface Temperature (LST)

Great Bear Lake (June 2023)

Ander the stand of the second state of the sec

Great Bear Lake (August 2023)

Satellite Derived – Monthly LST Great Bear & Slave Lakes

Carmack E., S. Vagle, and H. Kheyrollah Pour (2024) Journal of Geophysical Research - Earth Surface.

LST Retrieval from Landsat

LST algorithm for >500 sub-Artic lakes over the past four decades

LST Retrieval from Landsat

Retrieve LST from Landsat data (1984 to 2021)

Generate an open-access lakespecific LST dataset

Studying LST trends and spatial variability

Attiah G., H. Kheyrollah Pour, K. A. Scott (2023a), Earth Syst. Sci. Data.

LST Seasonal Trends

Attiah G., H. Kheyrollah Pour, K.A. Scott (2023b), Journal oh Hydrology: Regional Studies.

LST Rate of Change

Attiah G., H. Kheyrollah Pour, K.A. Scott (2023b), Journal oh Hydrology: Regional Studies.

CLIMoGrid Model

For more details see poster

Spatially Distributed Modelling of Ice Thickness on Small and Medium Sub-Arctic Lakes Gifty Attiah ^{1,2}, K. Andrea Scott ³, Homa Kheyrollah Pour ^{1,2} ¹ Remote Sensing of Environmental Change (ReSEC) Research Group, Department of Geography and Environmental Studies ² Cold Regions Research Centre, Wilfrid Laurier University, Waterloo, Canada

Studies

Real-time Lake Ice Monitoring

- Great Bear Lake Déline Ice Road (×2)
- Great Slave Lake, Dettah Ice Road
- Great Slave Lake, Łutsel K'e (×2)
- Vee Lake Ice Road
- Landing Lake, Yellowknife
- Ryan Lake, Yellowknife

8 Snow and Ice Mass Balance Apparatuses (SIMBA) stations in NWT

Real-time Year-Round Lake Monitoring

SIMBA Thermisto Chain

Temperature Sensor

Rafat A., & H. Kheyrollah Pour et al., (2023), Journal of Cold Regions Science & Technology

Mapping Lake Snow depth, Ice Thickness & Ice elevation

N 150 m

In-situ observations

35 45 50 55 60 30 40 Snow Depth (cm)

Pouw, A.F., H. Kheyrollah Pour, A. MacLean (2023), The Cryosphere

CLIMoGrid Model – Mean Yearly Ice Thickness

Great Bear Lake

Great Slave Lake

2003-2004

Ice Thickness (m)

CLIMoGrid Model – Daily Ice Thickness

April 01, 2004

L Ice Thickness (m) 1.5

CLIMoGrid Model – Validation

Kheyrollah Pour et al. Journal of Environmental Modelling and Software (In review)

CLIMoGrid Model – Validation

Valīdatīon: Model vs. SIMBA (In Sītu)

Comparison of daily simulated lake ice thickness from January to March 2022 with thickness derived from a Snow and Ice Mass Balance Apparatus (SIMBA)

Yearly Ice Thickness Distribution (1984–2022)

Significant Decrease in Ice Thickness

Lake Ice Thickness Anomaly (1984–2022)

Significant Decrease in Ice Thickness

Weekly Community Ice Thickness Monitoring

Thanks.

NSERC

CRSNG

Remote Sensing of Environmental Change Research Group ReSEC

Environment and

UNIVERSITY OF

WATERLOO

Climate Change Canada

water

The Laurier Institute

for Water Science

ReSEC Lab @ReSEC_WLU Email: hpour@wlu.ca www.reseclab.ca