Samuel Johnston <u>Claude Duguay</u> Justin Murfitt

H2O Geomatics & University of Waterloo (Canada)

A Deep Learning Model for Lake Ice Cover Forecasting

7th Workshop on "Parameterization of Lakes in Numerical Weather Prediction and Climate Modelling" 20-22 November 2024 - Milan, Italy

Background

- The presence (or absence) of ice cover and its extent affect socioeconomic/recreational activities, climate and weather events (e.g., lake-effect snowfall, thermal moderation) locally and regionally
- EO observations of lake surface state (e.g., ice cover/open water and surface temperature) from multiple satellite missions can help improve the prediction of weather events from NWP models

Data Source: NASA Terra/MODIS image (11 February 2016) showing snow bands over the Great Lakes of North America.

Background

Lake-effect snowfall

November 2022 Great Lakes historic winter storm!

- 17-20 Nov. 2022: ~200 cm of snow fell in Buffalo area
- At least four deaths

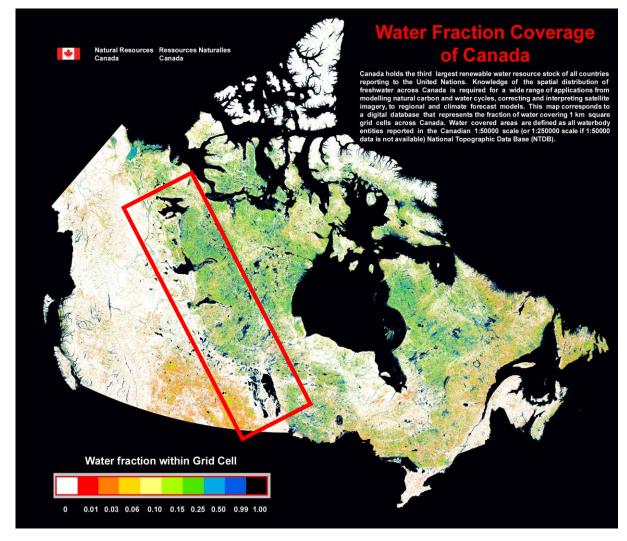
19-23 December 2022

- The storm lasted four days ~132 cm recorded in the Buffalo region — most fell over two days.
- 37 deaths reported (29 in City of Buffalo)
- Faced risk of flooding with rising temperatures and rain in forecast

Background

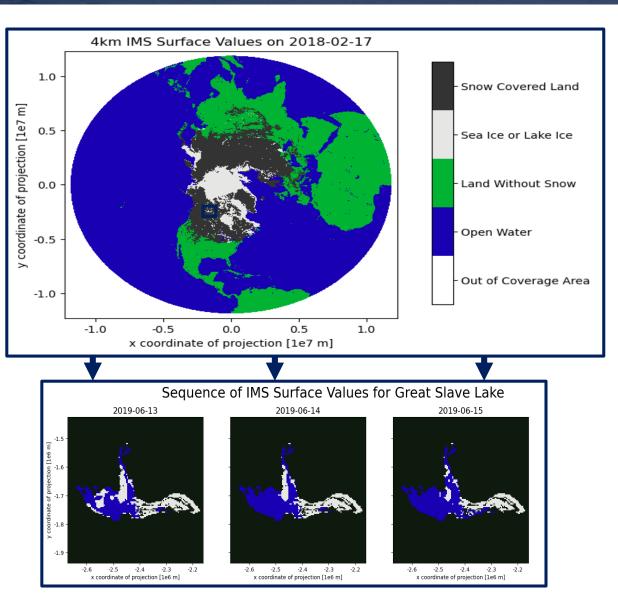
- Lakes comprise a significant proportion of the land surface at northern latitudes
- Existing lake models used as lake parameterization schemes in NWP and climate models are one-dimensional
- With recent advances in machine learning and the availability of longer historical satellite data records, we initiated a project on the development of a deep learning model for LIC forecasting (contemporary and future weather/climate conditions)

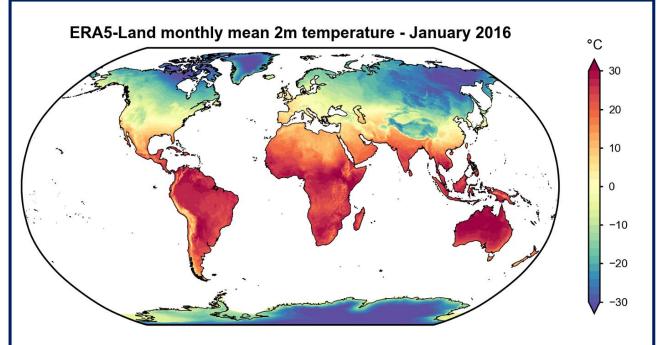
Johnston et al. (in preparation)



LIC is a thematic product of Lakes as an ECV

Data: IMS (training and validation) and ERA5

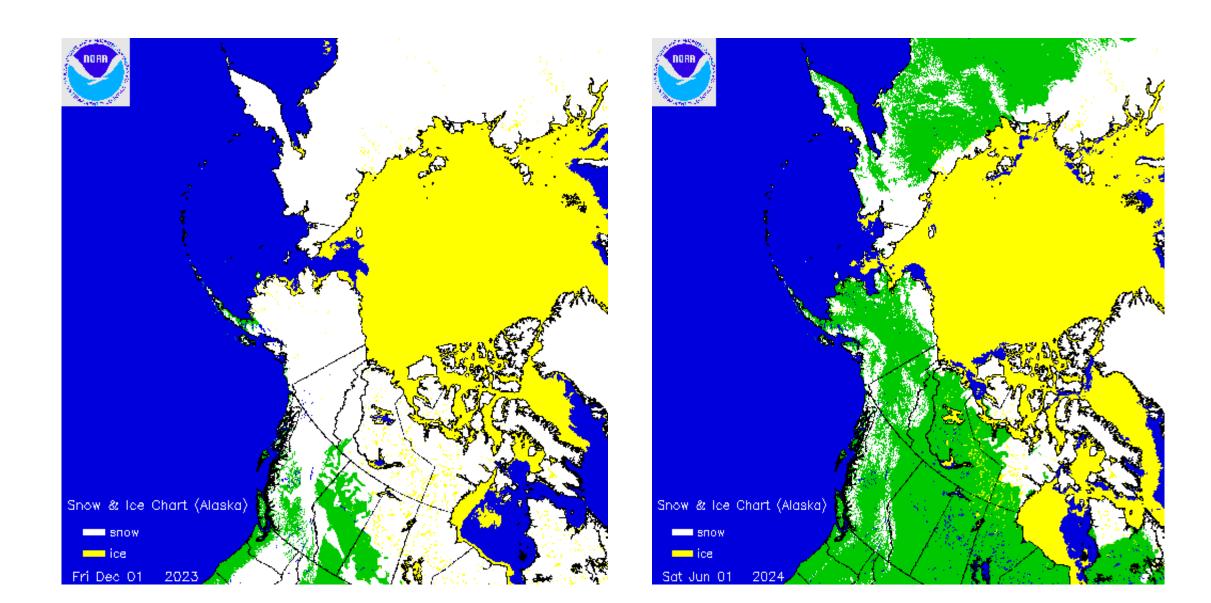




ERA5 Processing:

- 1. Calculate additional variables
- 2. Aggregate from hourly to daily
- 3. Reproject to match IMS
- 4. Interpolate onto 4-km IMS grid (Nearest Neighbours)

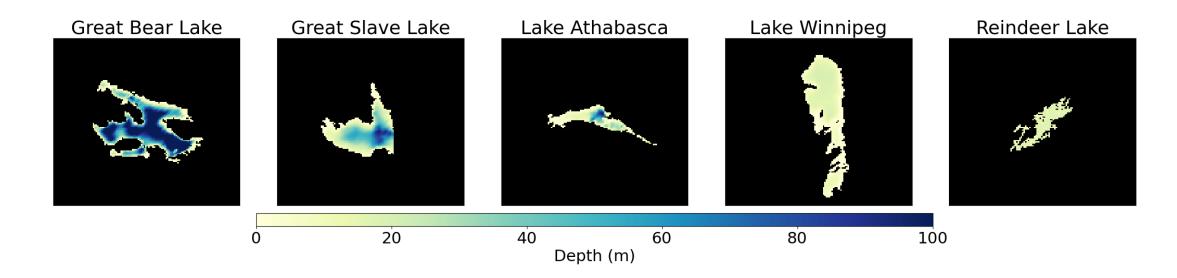
IMS Examples: Freeze-up and break-up (2023-2024)



Data: ERA5

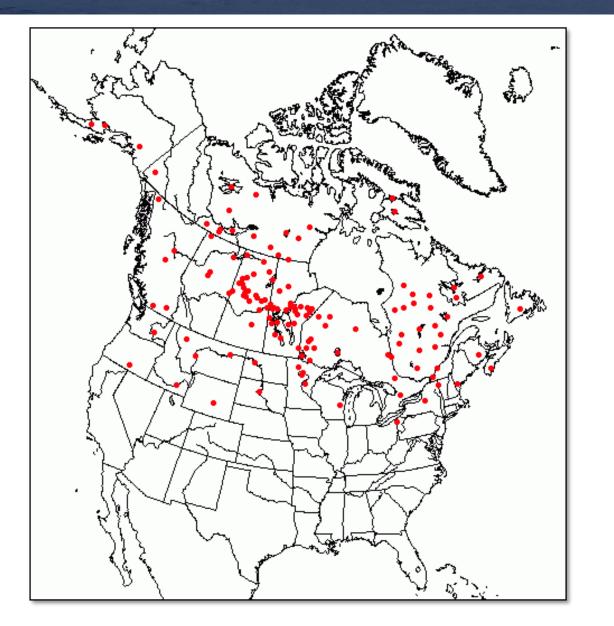
Variable Name	Source
Temperature_2m (Celsius)	ERA5-Land: Temperature at 2m (K)
Surface_solar_radiation_downwards_sum (Jm ⁻²)	ERA5-Land: Surface Solar Radiation Downwards (Jm ⁻²)
Wind_speed_10m (ms ⁻¹)	ERA5-Land: U-component of wind at 10m (ms ⁻¹) and V-component of wind at 10m (ms ⁻¹)
Total_precipitation_sum (m)	ERA5-Land: Total Precipitation (m)
Total_cloud_cover (fraction)	ERA5: Total Cloud Cover (fraction)
Accumulated_freezing_degree_days (Celsius)	ERA5-Land: Temperature at 2m (K)
Accumulated_thawing_degree_days (Celsius)	ERA5-Land: Temperature at 2m (K)

Data: Lake Bathymetry



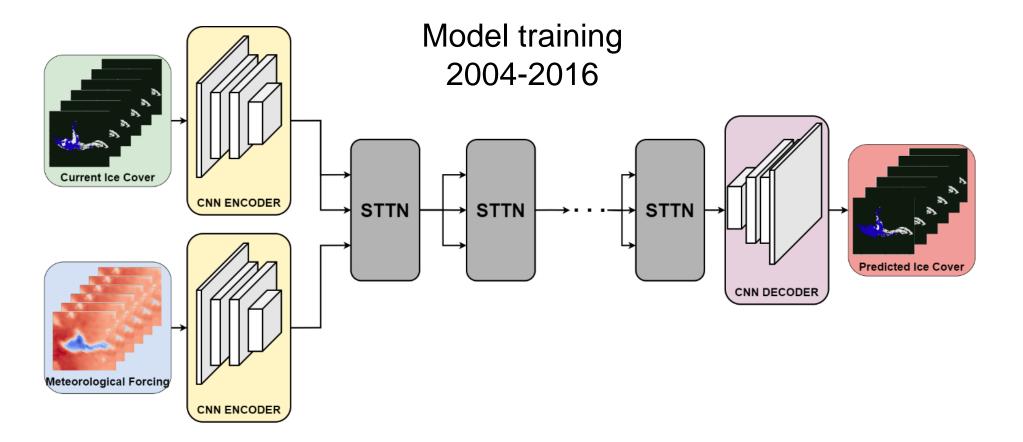
Toptunova, O., M. Choulga, and E. Kurzeneva, 2019. Status and progress in global lake database developments. Adv. Sci. Res., 16, 57–61, https://doi.org/10.5194/asr-16-57-2019

Data: Canadian Ice Service (validation)



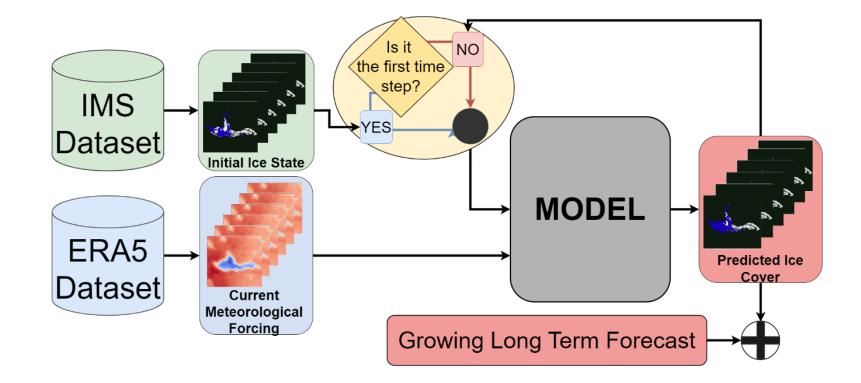
- <u>Weekly</u> ice fraction (concentration; 0 to 10 tenths) from visual interpretation of radar and optical imagery by ice analysts
- Single ice fraction value reported per lake (ca. 140 lakes across Canada and the northern US, excl. Laurentian Great Lakes – separate daily product)
- The product is used operationally at ECCC for weather forecasting
- CIS dataset was used for validation of the LIF-DL (Lake Ice Forecasting using Deep Learning) model output

LIF-DL Model: Architecture



Overview of the model which incorporates Convolutional Neural Networks (CNN) and Spatial-Temporal Transformer Networks (STTN) components

LIF-DL Model: Autoregressive Deployment

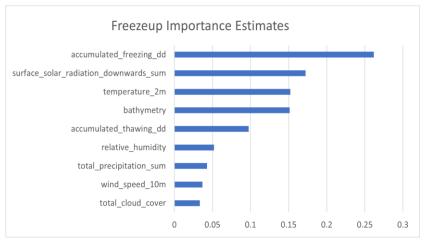


Overview of autoregressive method of producing long-term forecasts using the LIF-DL model. Initial ice states are used to produce the first prediction, after which model predictions are fed back in as input to continue forecasting forward through time

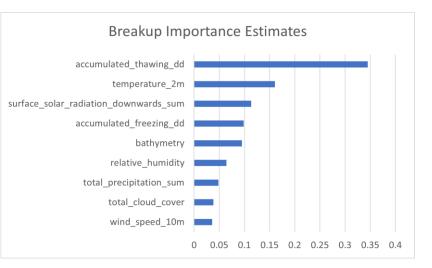
LIF-DL Model: Variable Importance Estimates

Overall variable importance estimates (across all dates) **Overall Importance Estimates** accumulated thawing dd accumulated freezing dd temperature 2m surface solar radiation downwards sum bathymetry relative humidity total precipitation sum total_cloud_cover wind speed 10m 0.2 0.25 0 0.05 0.1 0.15

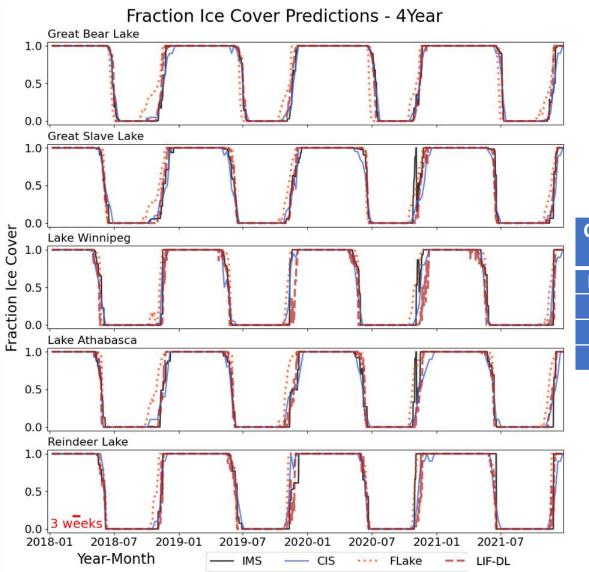
Freeze-up (September to February)



Break-up (March to August)



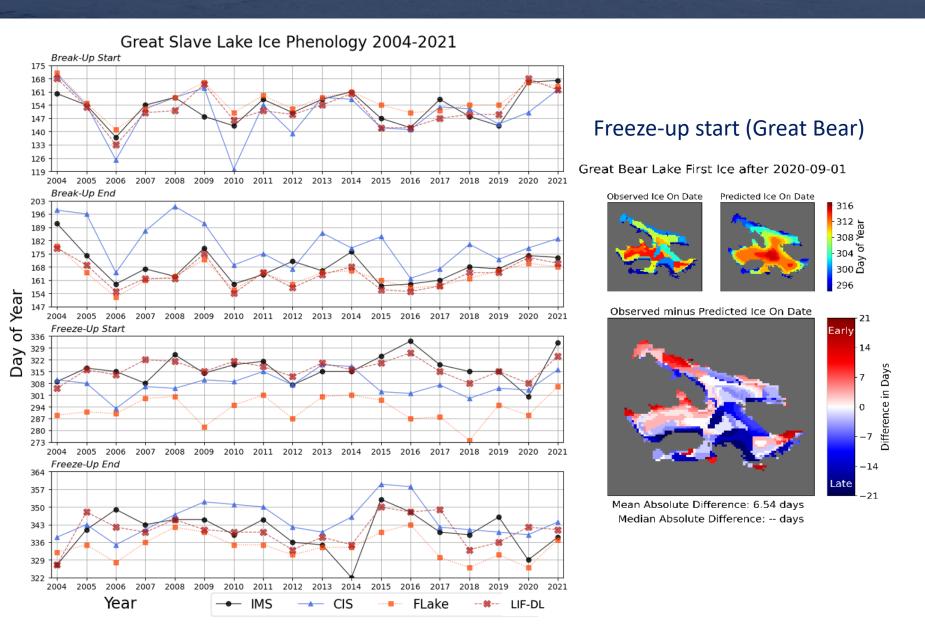
Results: Ice Cover Fraction



Lake-wide ice cover fraction over the testing (validation) period (2018 – 2021) from observation (IMS and CIS) and models (LIF-DL and FLake)

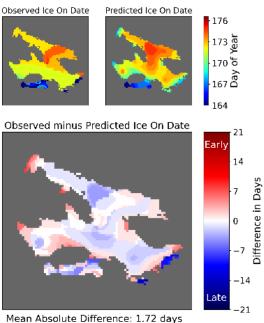
Comparison	Break-up Start (days)	Break-up End (days)	Freeze-up Start (days)	Freeze-up End (days)
LIF-DL, IMS	6.6	4.8	5.0	5.7
FLake, IMS	7.1	6.1	20.9	10.4
LIF-DL, CIS	8.1	11.3	7.1	7.6
FLake, CIS	7.9	11.8	14.8	14.4

Results: Ice Phenology



Break-up start (Great Bear)

Great Bear Lake First Open Water after 2021-03-01



Mean Absolute Difference: 1.72 days Median Absolute Difference: -- days

Conclusions

- Deep learning and data-driven approaches have the capacity to:
 - Learn relationships between climate and ice-cover extent
 - Learn spatial patterns of freezing/thawing
 - Forecast over long time periods without significant error accumulation
- Limitations: Dataset quality/bias
 - ERA5 values are diagnostic they are affected by the ERA5 ice model
 - IMS temporal gaps due to cloud cover leads to punctuated changes in ice-cover classifications
 - IMS data contains 'artifacts' (erroneous pixels) plan to integrate ESA CCI+ Lakes 1-km LIC gap-filled product in future
 - Bathymetry for example, the depth of the east arm of Great Slave Lake
- Future work will investigate the incorporation of more physical understanding into the model design, conduct further validation to improve interpretability (more lakes), and use CCI+ Lakes gap-filled product to forecast LIC over ca. 1,500 lakes (possibly more) globally

Thank you for your attention!

<u>Contact</u>: Sam Johnston or Claude Duguay samuel.johnston@h2ogeomatics.com or crduguay@uwaterloo.ca claude.duguay@h2ogeomatics.com